A Nonconvex Minlp Optimization Problem in Reactor Design and Production Assignment: Its Formulation and Global Solution

نویسندگان

  • Xiaoxia Lin
  • Christodoulos A. Floudas
  • Josef Kallrath
چکیده

In this work, we address the rigorous and efficient determination of the global solution of a nonconvex MINLP problem arising from product portfolio optimization introduced by Kallrath (2003). The goal of the optimization problem is to determine the optimal number and capacity of reactors satisfying the demand and leading to a minimal total cost. Based on the model developed by Kallrath (2003), an improved formulation is proposed, which consists of a concave objective function and linear constraints with binary and continuous variables. A variety of techniques are developed to tighten the model and accelerate the convergence to the optimal solution. A customized branch and bound approach that exploits the special mathematical structure is proposed to solve the model to global optimality. Computational results for two case studies are presented. In both case studies, the global solutions are obtained and proved optimal very efficiently in contrast to available commercial MINLP solvers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models and solution techniques for production planning problems with increasing byproducts

We consider a production planning problem where the production process creates a mixture of desirable products and undesirable byproducts. In this production process, at any point in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a function of the cumulative mixture production up to that time. The mathematical formulation of this continuous-time pro...

متن کامل

Global Solution Approach for a Nonconvex MINLP Problem in Product Portfolio Optimization

The rigorous and efficient determination of the global solution of a nonconvex MINLP problem arising from product portfolio optimization introduced by Kallrath (2003) is addressed. The objective of the optimization problem is to determine the optimal number and capacity of reactors satisfying the demand and leading to a minimal total cost. Based on the model developed by Kallrath (2003), an imp...

متن کامل

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem

The multiperiod blending problem involves binary variables and bilinear terms, yielding a nonconvex MINLP. In this work we present two major contributions for the global solution of the problem. The first one is an alternative formulation of the problem. This formulation makes use of redundant constraints that improve the MILP relaxation of the MINLP. The second contribution is an algorithm tha...

متن کامل

On a Nonconvex MINLP Formulation of the Euclidean Steiner Tree Problem in n-Space

The Euclidean Steiner Tree Problem in dimension greater than 2 is notoriously difficult. Successful methods for exact solution are not based on mathematical-optimization — rather, they involve very sophisticated enumeration. There are two types of mathematical-optimization formulations in the literature, and it is an understatement to say that neither scales well enough to be useful. We focus o...

متن کامل

Interaction of Design and Control: Optimization with Dynamic Models

Process design is usually approached by considering the steady-state performance of the process based on an economic objective. Only after the process design is determined are the operability aspects of the process considered. This sequential treatment of the process design problem neglects the fact that the dynamic controllability of the process is an inherent property of its design. This work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004